Centre No.							Pape	er Refei	ence			Surname		Initia	ı(s)
Candidate No.					4	3	3	5	/	2	H	Signature			
		•	r Reference	/2H									Exam	iner's use	only
		L	on	do	n l	Ex	an	nin	at	ion	is]	IGCSE	Team L	eader's u	se only
		C	hei	mis	try										

Paper 2H

Higher Tier

Tuesday 6 November 2007 – Morning Time: 2 hours

Materials required for examination	Items included with question papers
Nil	Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname and initial(s) and your signature.

Answer ALL questions in the spaces provided in this book.

Show all stages in any calculations and state the units. Calculators may be used.

Some questions must be answered with a cross in a box (\boxtimes) . If you change your mind about an answer, put a line through the box (\boxtimes) and then mark your new answer with a cross (\boxtimes) .

Information for Candidates

The marks for individual questions are shown in round brackets: e.g. (2).

There are 11 questions in this question paper. The total mark for this paper is 120.

There are 24 pages in this question paper. All blank pages are indicated.

Advice to Candidates

Write your answers neatly and in good English.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

©2007 Edexcel Limited.

Printer's Log. No. H29122A
W850/U4335/57570 4/5/6/2/1

	0	4 H elium 2	Neon Neon 10 10 Argon	Krypton 36 Xenon	Radon 86	
	7		Fluorine 9 35.5 Chlorine	80 Br Bromine 35 127 I lodine	210 At Astatine 85	
	9		Ocygen 8 8 Sulphur	Selenium 34 128 Tellurium Tellurium	210 PO Potonium 84	
	ß		Nitrogen 7 31 Phosphorus	As Arsenic 33 122 Sb Antimony	209 Bi Bismuth 83	
	4		Carbon 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Germanium 32 A119 Sn Tin	50 207 Pb Lead 82	
	က		B Boron 5	13 Caallium	204 204 TT TT Thailium 81	
				65 Zn Zinc 30 112 Cd Cadmium		
TABLE				63.5 Cu Copper 29 108 Ag Silver	+	
THE PERIODIC TABLE				Nickel 28 106 Palladium		
PERI				S9 CO Cobalt 1 27 103 Rhodium Pre	- 	
置				Fe Fe For	190 OS OSMIUM 76	
	Group	Hydrogen		Mn Manganese 25 99 TC	186 Re (Rhenium 75	Key Relative atomic mass Symbol Name Atomic number
	ច	H		Chromium Man 24 96 MO Molybdenum Tech	184 N P F Tumpsten Rhi	Hei Ato
				Chroi Chro	Tung Tung L	
				51 V Vanadium 23 93 Niobium Niobium		
				48 Ti Titanium 22 91 Zr		
				Scandium 21 889		
	N		9 Be Beryllium 4 24 24 Mg Magnesium			
	-		Lithium 3 3 3 23 Sodium	Potassium 19 Rb Rubidium	37 133 CS Caesium 55 223 Fr Francium 87	
		Period 1	α ₀	4 r	9 /	

SECTION A

Leave blank

1. These are the structures of six hydrocarbons.

- (a) Use the letters of the hydrocarbons to answer these questions.
 - (i) Give the letter of a hydrocarbon which is **not** an alkene. (1)
- (b) Hydrocarbon **D** forms a polymer. Give the name of this polymer and draw a diagram to represent the structure of the polymer.

Name of polymer

Structure of polymer

(3) Q1

(Total 6 marks)

Leave blank

2. (a) Atoms contain smaller particles. Complete the table to show the relative mass and relative charge of each particle.

Particle	Relative mass	Relative charge
electron		
neutron	1	
proton		+1

(4)

(h)	Use the Periodic	Table on page 2 to	o name an element	whose atoms

(1)	contain equal	numbers of	protons and	neutrons	
					(1)

(1)

(d) The diagrams show the electronic configuration of helium and of neon.

i)	What is the	similarity	in the	outer e	electron	shells	of these	two	atoms?
l,	Willat is the	SIIIIIIaiity	III tile	outer (SHOHS	or these	LWO	atoms:

	(1)

(ii) What effect does this similarity have on the chemical reactivity of helium and neon?

neon?					

(1)

(Total 10 marks)

Q2

	3.	Use information	from 1	the table	to answer	this questio
--	----	-----------------	--------	-----------	-----------	--------------

<u>†</u>	Name of metal	Colour of solid metal	Colour of a solution of the metal(II) sulphate
	magnesium	grey	colourless
	zinc	grey	colourless
increasing reactivity	iron	dark grey	green
	copper	pink-brown	blue

	copper	pink-brown	blue
When zinc is ad	lded to magnesium sul	ohate solution, no rea	ction occurs. Explain why
			(1)
When iron filing	gs are added to coppe	r(II) sulphate solution	n, a reaction takes place.
(i) Write a che	emical equation for thi	s reaction.	
			(2)
(ii) Describe th	e colour changes duri	ng this reaction.	
Colour char	nge of solid		
Colour cha	nge of solution		
added to dilute s What does this	sulphuric acid, hydrog	en gas and iron(II) su	ion occurs. When iron is lphate solution are formed mpared to the reactivity of
			(2)

a)	The	$e \Delta H$ value for this reaction is negative.
	(i)	What does ΔH represent?
		(2)
	(ii)	What happens to the temperature of the reaction mixture during this reaction?
		(1)
))	Hyd liqu	drogen gas burns in oxygen to produce a colourless liquid. Name this colourless iid.
	••••	(1)
	Mag	gnesium sulphate can be prepared in a laboratory using the reaction between
:)		gnesium carbonate and dilute sulphuric acid.
;)	mag	$MgCO_3(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2O(l) + CO_2(g)$
;)	mag	
·)	mag	$MgCO_3(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2O(l) + CO_2(g)$
·)	mag	$MgCO_3(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2O(l) + CO_2(g)$
)	mag	$MgCO_3(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2O(l) + CO_2(g)$
)	mag	$MgCO_3(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2O(l) + CO_2(g)$
)	mag	$MgCO_3(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2O(l) + CO_2(g)$
)	mag	$MgCO_3(s) + H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2O(l) + CO_2(g)$

	en chloride, HCl, is a covalent compound. It is a coler of solvents.	ourless gas and is soluble in
(a) (i)	Draw a dot and cross diagram to show the covaler hydrogen chloride. Show outer electrons only.	at bonding in a molecule of
		(2)
(ii)	Hydrogen chloride has a low boiling point. Put a croshow the reason for this.	oss (🗵) in the correct box to
	The covalent bonds are strong	
	The covalent bonds are weak	
	There are weak forces between the ions	
	There are weak forces between the molecules	(1)
(b) (i)	Hydrochloric acid is a solution of hydrogen chloride of the species that makes the solution acidic.	in water. Give the formula
		(1)
(ii)	Explain why there is no colour change when univer to a solution of hydrogen chloride in methylbenzene	
		(1)

(c)	7:1		
	(1)	When concentrated hydrochloric acid is added to solid potassium manganate(VII), chlorine gas is given off. Describe what is seen if a piece of damp universal indicator paper is held in the gas.	
	(ii)	Chlorine exists as two isotopes. Why do these isotopes have identical chemical properties?	
		(1)	
(d)		n forms two chlorides, iron(II) chloride and iron(III) chloride. Describe a chemical that you could use to distinguish between these compounds.	
	Tes	t	
	Res	cult with iron(II) chloride	
	Res	sult with iron(III) chloride(3)	
		(Total 11 marks)	
		TOTAL FOR SECTION A: 45 MARKS	

9

Turn over

Leave blank

(2)

6	A sequence	of react	ions invo	olvino e	thanol is:

 $C_6H_{12}O_6 \xrightarrow{\text{Reaction 1}} C_2H_5OH \xrightarrow{\text{Reaction 2}} C_2H_5ONa$

SECTION B

(a) (i)	What type of substance is $C_6H_{12}O_6$?		
		(1)	
		,	

(1)

State **two** conditions used in this process.

(c) Ethanol can be made industrially by the hydration of ethene.

(ii) What is the empirical formula of $C_6H_{12}O_6$?

(b) Reaction 1 is used to prepare ethanol by fermentation.

(i) Write a chemical equation for this reaction.

(1)

(ii) State **two** conditions used in this industrial process.

1

2

(d)		the two reasons why a country such as Brazil makes large quantities of ethanol nentation instead of by the hydration of ethene.	by
		mentation histead of by the hydration of ethene.	
	2		
			(2)
(e)	(i)	What is added to ethanol in Reaction 2?	
			···· (1)
	(ii)	State the name of the product.	
			 (1)
	(iii)	Predict the type of bonding between O and Na in the compound C ₂ H ₅ ONa.	
			(1)
		(Total 12 mark	ks)

7. (a) Solid sulphur can exist in different forms called allotropes.

The most common allotrope of sulphur is rhombic sulphur.

The diagram shows how two molecules of sulphur are arranged in this allotrope.

(1)	What is the formula of one molecule of sulphur?	

	(1

(ii)	What is represented	by	each	of the	lines	labelled	I and II?	
------	---------------------	----	------	--------	-------	----------	-----------	--

I	
II	
	(2)

(i) Write	a chemical	equation	for thi	s conversion.
٦		,				

17

(ii) State three conditions used in this conversion.

1	
2	

		ohur trioxide in the atmosphere causes acid rain. Write a chemical equation for the formation of acid rain by sulphur trioxide.	
((1)	write a chemical eduction for the formation of acid rain by sulphur trioxide.	
		(1	
((ii)	State two harmful effects of acid rain on the environment.	
·		1	
			•
		2	
		(2	.
		(Total 11 marks)	
		(Total II marks)	,

		$Mg(s) + F_2(g) \rightarrow MgF_2(s)$	
(a)	(i)	Describe the structure of a metal such as magnesium.	
			(2)
	(ii)	What is meant by the term malleable?	
			(1)
	(iii)	Explain, in terms of its structure, why magnesium is malleable.	``
			(2)
(b)	The	atoms of fluorine in the F ₂ molecule are joined by a covalent bond.	
	Des	cribe how the atoms are held together by this bond.	
			(2)
(c)	Giv	e the electronic configuration of	
	(i)	a fluorine atom	
	(ii)	a fluoride ion	
			(2)

/ T		Leave blank
(d)	Draw a diagram to show the arrangement of electrons in a magnesium ion, showing its charge.	
	(2)	
(e)	Suggest why magnesium fluoride, MgF ₂ , has a higher melting point than sodium	
	fluoride, NaF.	
	(2)	Q8
	(Z)	Q ₀
	(Total 13 marks)	

9.	The equation	for the reaction	used to manufacture	ammonia in the Haber	process is
----	--------------	------------------	---------------------	----------------------	------------

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ/mol}$

A temperature of 450 °C and a pressure of 200 atmospheres are often used.

(a) Complete the table to show what happens to the rate of reaction and yield of ammonia if the conditions are changed as shown.

Change	Effe	ct on
Change	Rate of reaction	Yield of ammonia
decrease in temperature		
addition of catalyst		

(4)

(1)

(b) State and explain, using the kinetic theory, the effect on the rate of reaction of increasing the concentration of nitrogen in the Haber process.

(3)

(c) Under the conditions used in the Haber process the yield of ammonia is about 15%. What happens to the unreacted nitrogen and hydrogen?

	are:		
		Reaction 1 ammonia + oxygen \rightarrow nitrogen monoxide + water	
		Reaction 2 $nitrogen monoxide + oxygen \rightarrow nitrogen dioxide$	
		Reaction 3 $-$ nitrogen dioxide + oxygen + water \rightarrow nitric acid	
	(i)	The same type of reaction occurs in Reactions 1, 2 and 3.	
		Name this type of reaction.	
			(1)
	(ii)	Which metal is used as the catalyst in Reaction 1?	
			(1)
	(iii)	Write a chemical equation for Reaction 2.	
			(2)
(e)	An	important fertiliser is made by reacting ammonia with nitric acid.	
	Giv	e the formula for this fertiliser.	
			(1)
(f)	Nan	ne the elements, other than nitrogen, that an NPK fertiliser must contain.	
	•••••		(2)

Leave	
blank	

10	Some reactions	of calcium	compounds are	shown ir	this sequence
IU.	Some reactions	or carcium	compounds are	SHOWH II	i iiiis sequence.

$$CaO \xrightarrow{Reaction \ \textbf{1}} Ca(OH)_2 \xrightarrow{Reaction \ \textbf{2}} Ca(NO_3)_2 \xrightarrow{Reaction \ \textbf{3}} CaCO_3$$

(a) What colour do calcium compounds give in a flame test?

(1)

(b) What is added to calcium oxide in Reaction 1?

(1)

(c) The chemical equation for Reaction 2 is

$$Ca(OH)_2 + 2HNO_3 \rightarrow Ca(NO_3)_2 + 2H_2O$$

A 14.8 g sample of calcium hydroxide is neutralised by a solution of nitric acid of concentration 1.6 mol dm^{-3} .

(i) Calculate the relative formula mass of calcium hydroxide and the amount, in moles, of calcium hydroxide in the 14.8 g sample.

(2)

	(ii) Calculate the minimum volume, in cm ³ , of this solution of nitric acid needed to
	neutralise the sample of calcium hydroxide.
	(iii) Pagation 2 is used to proper 0.050 males of calcium nitrate
	(iii) Reaction 2 is used to prepare 0.050 moles of calcium nitrate.
	Calculate the mass of this amount of calcium nitrate.
(d)	Sodium carbonate solution is used as the reagent in Reaction 3.
	Write a chemical equation for the reaction and state one observation that can be made.
	Equation
	Observation
	(3)

Leave blank

11. The diagram shows apparatus that can be used to electrolyse dilute sulphuric acid.

- (a) (i) Label the electrodes in the diagram by writing the symbols + and in the circles.

 (1)
 - ,

(ii) The equations for the reactions occurring at the electrodes are

Equation 1
$$2H^+(aq) + 2e^- \rightarrow H_2(g)$$

Equation 2
$$4OH^{-}(aq) \rightarrow 2H_{2}O(1) + O_{2}(g) + 4e^{-}$$

Give the formula of the species being reduced. Give a reason for your choice.

Species

Reason

(2)

	(iii) The volume of hydrogen gas collected after a few minutes is shown on the	Leav blanl
	Draw another line on the diagram to show the volume of oxygen gas collected after the same length of time. Explain your choice with reference to Equations 1 and 2.	
	Explain your enoice with reference to Equations 1 and 2.	
	(3)	
(b)	In one experiment, the amount of charge passed was 0.40 faraday.	
	(i) Calculate the amount, in moles, of hydrogen gas formed.	
	(1)	
	 (ii) Calculate the volume, in dm³, of this amount of hydrogen gas at room temperature and pressure (rtp). (Molar volume of any gas = 24 dm³ at rtp) 	
	(2)	
(c)	In a second experiment, the amount of charge passed was 0.80 faraday.	
	(i) Calculate the amount, in moles, of oxygen formed.	
	(1)	
	(ii) Calculate the mass, in g, of oxygen formed.	
	(2)	Q1
	(Total 12 marks)	
	TOTAL FOR SECTION B: 75 MARKS	
	TOTAL FOR PAPER: 120 MARKS	
	END	

